I found a document written in Italian and published online here by the retired physicist Camillo Urbani, who has been following for a long time the evolution of the “new energies”. It contains some interesting reflections resulting from the first Alexander Parkhomov’s report presented in Russia on a his successful replication of a Hot-Cat. I asked Eng. Ventola to translate it into English, also making all the necessary adjustments. Here’s the result:

I will illustrate a method proposed by Camillo Urbani to quickly test the fuel powders. It is based on the so-called “heat after death”, i.e. the heat progressively lost from reactor until it equilibrates with that of the surrounding medium, and with the “death” referring to cessation of electrical heating. So, now I report Camillo’s words, even though I made some little changes and integrations:

Heat_after_death_2The 8 minutes of “heat after death” are well visible in this chart of the Parkhomov’s experiment.

“In the above chart published in the Parkhomov’s report, showing the external temperature of his reactor corresponding to different constant values of power input, we see that, with the electrical power off due to the breaking of the heating element, there is a temperature collapse of about 100°C, then there is an up and down trend, followed even by a strange rise in the last part. Finally, after 8 minutes from discontinued power supply, the temperature sharply falls.

The point is that, without power supply, these things can NOT happen. Indeed, a hot body at a temperature of 1200 °C has walls which emit a huge amount of energy by radiation (about the 85% in the ‘Dog Bone’ reactor of Andrea Rossi illustrated in the Lugano report), while the remaining thermal energy is dispersed mainly by convection. Then the cooling should be relatively gradual, and the temperature curve should lack ‘ascents’.

The intensity of the temperature drop depends on 3 factors: (1) Mass: the greater is the mass to disperse and more heat is present, so that the cooling time is longer; (2) Temperature: the higher is the temperature and faster the body emits heat, with an exponential trend in which the exponent value is 4; (3) Emitting surface: more is extended and sooner it cools, so the shape of the container affects the trend (a sphere requires more time to cool).

I looked on YouTube some movies like this, in which pieces of iron weighing about 0.15 kg were heated at a high temperature. In such cases, the time of variation of their color, in general, does not exceed 10 seconds. So, the 8 minutes of ‘heat after death’ resulting from the Parkhomov’s experiment in my opinion cannot be explained with a known process.

ForgeA video showing a 15 kW induction forge. You can see it clicking here.

Assuming, hypothetically, that there is some repeatability of this phenomenon, it would be useful to have a valid instrument, based on such process, to assess the fuel’s efficiency in producing excess heat – that is the goodness of the test with regard to LENR reactions – with various mixtures of powders and different experimental conditions.

Since we can expect a low reproducibility of the experiment, given the precedents of many types of experiments with LENR reactors made in the world over the past 25 years, it would be even more useful to have a method of analysis as fast as possible to be able to make many attempts. So here’s a simple proposal of a fuel test that allows a high execution speed and probably is more sensitive to the “heat after death” with respect to a Hot-Cat reactor.

You put all in an electrical heater, which leads the reactor to a high-temperature. Then, turning off the power to the heater, you can track the temperature diagram vs. elapsed time, graph which gives important indications about the amount of produced excess heat, useful for comparing different combinations of fuel through a differential analysis of the output energy.

To speed up the test and simplify the setup, you could consider to use an induction heater (similar to those used for cooking), which uses the electrical currents induced in appropriate materials to generate heat. But we should first see what is the effect of its intense variable electromagnetic fields (with frequencies of hundreds of kHz) on the reaction. You have also to tailor the reactor and the materials to make them suitable for this type of use.

Induction_heaterAn example of an induction heater used for applications other than cooking.

If using the method of inductive heating the reaction on which the Hot-Cat is based still works, the advantage would be considerable: indeed, in a few minutes it would be possible to bring the reactor to the desired temperature and to plot the cooling diagram for the powder we are interested in analyzing. However, steel loses its magnetic properties when heated above about 700 °C (the Curie temperature), so we cannot heat it with this method above 700 °C.

In a little time, therefore, one could test a powder mixture, then another powder sample prepared in another container, and so on. A small group of researchers, in a few days, could test hundreds of possible variants assessing the different effectiveness. In practice, with the typical budget and equipment available in a research center, it would be very easy.

The first variable to be analyzed will be, possibly, the type of gas contained in the reactor. I imagine that the first test should be done by introducing the dust in the quantities suggested by Parkhomov in his presentation, then heating to 200-300°C and heat-sealing the reactor. In this way, the original air remained inside will be less than 5% of the normal one. If you want to try with other gases, you can introduce appropriate chemical agents that release them.

The volume of the reactor chamber in which the powder is placed is another parameter to be evaluated, or to take into account. Indeed, if the available space for the expansion of the gas doubles, the pressure will halve. Since the operating pressure may have its importance, one can use multiple cylinders different from each other as regards the volume of the chamber, or you can vary its volume with a threaded screw (see the picture below).

Reactor_fuel_5

The simple reactor for fuel tests based on “heat after death” proposed by Camillo Urbani.

The other variables to be analyzed, at this point, would be many. They include the variation of the relative amounts of the chemical elements already present (for example, the proportion between Nickel and Lithium Aluminum Hydride), the addition – one after the other, in rotation – of small traces of new elements (not only of new gas), etc.

The use of the induction heater would also have the additional advantage that the inductive pulse in the solenoid may then be modified, trying to get ‘Tesla-like’ pulses, characterized by a ‘hyper-current’ at least 10 times higher than the tolerable but maintained for very short moments, with a suitable dead time between a pulse and the other”.

Camillo Urbani – Physicist    (translated by Eng. Roberto Ventola, author of the book “Hot-Cat 2.0“)

If you want to share it...Share on Google+Tweet about this on TwitterShare on FacebookEmail this to someone

2 comments

    • James Rovnak

    • June 18, 2015

    • 8:38 PM

    • Reply

    Time to find out what really excites the Lady LENR 7 makes her glow so beautifully especially in the night air as Denis Vasilenko did recently before she took his fuel element!

    http://egooutpeters.blogspot.com/2015/06/lenr-info-for-june-18-2015.html?showComment=1434651004661#c5284344118609442564

    • James Rovnak

    • June 14, 2015

    • 7:49 PM

    • Reply

    Vessela did you ever wonder if Rossi could be his own mouse & move the Cat up & down the temperature ramp with little burst of input power, coaxing her up / down the temperature ramps by tampering with the micro burst of power fueling her nuclear flame? I think he is!

    Your friend & admirer of your writting skills! Jim

Leave a Reply