I found extremely interesting the paper on someDavid_H_Nagel_2 fundamental “Questions About Mechanisms and Materials for LENR”, appeared in the issue 118 of Infinite Energy magazine and written by David J. Nagel, an American distinguished scientist whose current research centers on “Lattice Enabled Nuclear Reactions” (LENR). He is also the founding CEO of NUCAT Energy LLC, a company that provides various consulting and educational services for LENR.

Here’s a brief summary from his 14 pages article:

1) Is there only one, or more than one, basic physical mechanism(s) active in LENR experiments to produce the diverse measured results?

“In LENR experiments have been measured: (1) large thermal power releases and high energy gains; (2) output processes as fast as microseconds; (3) nuclear products ranging from tritium and helium through elements with intermediate masses to heavy elements; (4) fast particles, especially neutrons, charged particles and energetic photons; and (5) other effects such as emission of radio-frequency and infrared radiation and sound. The lack of many correlations between different experimental outputs from LENR experiments would seem to favor the operation of two or more fundamental mechanisms for LENR, either simultaneously or sequentially”.

2) Is excess heat from electrochemical loading and gas loading experiments due to the same basic mechanism(s)?

“It is possible that different mechanisms are active in these two major approaches to creating conditions that result in LENR. It might be possible to address this question by the use of the same materials in both types of experiments. Some cylindrical rods of some material that are coated, several at a time in the same equipment, with a thin film of a material conducive to producing LENR, maybe containing Pd or Ni, could be used as electrodes in electrochemical experiments and others put into gas loading experiments. Comparison of the results obtained with the two methods of loading might provide an answer to this question, although that is not the only potential outcome. It remains possible that the same mechanism(s) occur for both methods of loading, but differences in the two techniques would lead to divergent results”.

3) Do LENR occur exclusively as individual uncoupled events, or is it possible to have cascades of LENR, in which a reaction makes more likely the occurrence of more LENR?

“During energy production by nuclear fission, the proximity of fuel nuclei is necessary, if neutrons released by prior reactions are to be efficiently captured to produce further fissions. That leads to the question of whether or not similar effects might operate during the production of energy by LENR. That is, are cascaded or chain reactions operable during production of heat by LENR? There has been very little discussion of this possibility in the field to date. The answer to this question will ultimately depend on understanding of the basic mechanism(s) that produce LENR. There is indirect experimental evidence for the nearly simultaneous occurrence of numerous LENR in small spatial regions. However, that evidence alone does not indicate whether the reactions are independent of each other or occur in causal sequences”.

4) Is the excess heat due entirely or only partially to nuclear reactions, and, if partially, what other mechanism contributes to the heat output?

“It is conceivable that, under some conditions, all of the excess energy is due to nuclear reactions and, under other conditions, little of it is nuclear. Intermediate situations could also exist. Fleishmann and Pons thought that the only alternative explanation for the excess heat found in their experiment was nuclear reactions. However, there was and remains the possibility that there is some entity between nuclei and atoms in both size and energy, which can be formed with the release of energy, that is, without requiring nuclear reactions. Many theorists have postulated ‘compact objects’ (for example, the hydrino postulated by Randell Mills), the formation of which would yield eV to keV-scale energies, rather than nuclear MeV energies. Such entities supposedly involve one of the hydrogen isotopes as nuclei and also orbital electrons. Because of their small size and electron shielding, the protons or deuterons at the center of these objects can move closer to other nuclei in materials, which increases the probability of later true nuclear reactions”.

Lenr_compact_objects_2A slide from a presentation shown by D. Nagel at “2014 Cold Fusion Colloquium”, MIT.

5) What are the keys to making and maintaining materials that produce excess heat regarding both composition (notably impurities) and structure (vacancies, dislocations, cracks, etc.)?

“It is thought by many people that subtle, but critical variations in materials within LENR experiments are what make production of excess power challenging, and also account for variations in both reproducibility and output power. It was realized over 15 years ago that low level impurities could produce modest excess powers in LENR experiments, if the impurities were reactants. Even if impurities are not actually fuel, they might be needed to produce nuclear active regions in which LENR can occur. Very many physical and chemical processes have been employed to prepare the interior bulk and exterior surfaces of materials for LENR experiments. So, development of a quantitative and predictive theory for production of nuclear active regions might resolve this question. However, it is also possible that only very careful parametric experiments, in which key factors are both varied willfully and characterized in detail, will suffice to solve the materials riddle”.

6) The location of LENR has important implications. Do LENR occur on or near surfaces or in the bulk of materials or at any locations on or in a material?

“It matters greatly, both scientifically and practically, if LENR occur on or very near to surfaces of materials, in their bulk or in both types of locations. Surface sites, including cracks that extend to the surface, are readily accessible from the surrounding liquid or gaseous atmosphere. There is substantial empirical evidence of varying quality which indicates that LENR occur on or near the surface of solids. A systematic study of Pd material characteristics in relationship to their ability to produce excess power was conducted by Vittorio Violante and his coworkers at the Italian ENEA laboratories in Frascati, showing that surfaces with structures in the sub-micrometer (nanometer) scale favored the production of LENR power. However, the case for where LENR occur is certainly not closed. If LENR occur on surfaces, it will be easier to bring reactants together and to remove products compared to reactions occurring within materials, and it will also be easier to reconstitute nuclear active reactions on the surfaces of materials”.

Lenr_surface_bulk_2Another slide from a presentation shown by D. Nagel at “2014 Cold Fusion Colloquium”, MIT.

7) Are nano-scale structures or particles sizes necessary for occurrence of LENR?

“We cited some evidence just above for LENR occurring mainly on or near the surfaces of materials. If that is the dominant situation, then nanometer-scale structures could be fundamental to the occurrence of LENR. That is due to the fact that the surface and nearby regions on materials are generally on the order of 1 nanometer or less in thickness. As the size of material particles decreases toward the nanometer-scale, the surface-to-volume ratio increases. There is a significant body of research on LENR that involves particles with dimensions on the order of nanometers. It might be necessary to have structures with nanometer scales in two or three dimensions, in order to cause LENR. There has been some work published on the production and use of surfaces that have nanometric structures on or embedded in them prior to experiments. Such surfaces can be made by a wide variety of physical and chemical techniques”.

You can read the full article “Questions About LENR: Mechanisms and Materials” here.

DAVID J. NAGEL graduated Magna Cum Laude in Engineering Science. He has received an MS degree in Physics and a PhD in Materials Engineering. After graduating, Nagel worked as an officer in the US Navy and in 1990 joined the civilian staff of the US Naval Research Laboratory (NRL). He is currently Research Professor at The George Washington University, in the Department of Electrical and Computer Engineering.

The official website of Andrea Rossi is online! You can reach it at the following address: http://andrea-rossi.com/. Some of the beautiful photos you can find there:

ecat+MW1-USA+team+at+workingSome specialists of the USA team at work on the 1 MW plant.

(Copyright © Andrea-Rossi.com)

ecat+MW1-USA+sandy+control_3Electrical Engineer Fulvio Fabiani working on the control unit “Sandy”.

(Copyright © Andrea-Rossi.com)

The images above refer to the final phases of the manufacturing of a 1 MW E-Cat working at low temperatures (< 120 °C) and were made some months ago in Raleigh’s factory, in North Carolina. Now this American and much more advanced version of the old E-Cat first invented and built in Italy, is working at an industrial customer’s factory in a secret locality that I cannot reveal, where it is hosted in a red shipping container instead of the old blue case.

The current 1 MW E-Cat plant they are working on had originally, according to Rossi, a volume of reactors of half a cubic meter (500 liters of volume), which would mean a “power density” of 2 kW per liter, later increased to about 10kW / 1 liter. The tests of this first commercial 1 MW plant based on LENR delivered some months ago to an Industrial Heat’s customer will end between November 2015 and February 2016. The commercial phase will likely start shortly after the end of the 1-year test period of the 1 MW plant.

ENEL is Italy’s Torrealta_4major energy utility company, the second largest in Europe by market capitalization. So, it’s particularly interesting to illustrate its early behavior towards research on LENR, as shown from publicly available sources.

Formerly a state-owned monopoly founded in 1962 and with headquarters in Rome, ENEL is now partially privatized with Italian government control: the largest shareholder (31,2%) is the Italian Ministry of Economy & Finance. Today, ENEL manages the majority of the Italian electricity distribution network and is a multinational power company operating in 32 countries, with a particular focus in Europe and in Latin America.

As very well documented in a video broadcast on the Italian TV some years ago and also available on YouTube clicking here, in 2004 ENEL analyzed the opportunity to participate in the successful research program on LENR carried out, in Italy, by the ENEA (at the time, the Italian “National Agency for Alternative Energies”) at its laboratories in Frascati, near Rome, under the supervision of Carlo Rubbia, Nobel Laureate for Physics in 1984.

Indeed, the authors of the TV program “L’inchiesta”, conducted by the journalist Maurizio Torrealta (see the photo above), were in possession of an ENEL’s document dated February 2, 2004, in which the Company evaluated the possibility to come into play. Such program of investigative journalism, lasting about 25 minutes, was created in 2004 and has been broadcasted on the Italian state-owned TV channel RaiNews24, addressing over 100 topics.

We read, in this very interesting letter shown on TV: “The phenomenon does not seem to be totally a hoax, although its application in the field of power generation seems remote”. And the ENEL’s internal report, signed by G. Liberati, concludes with these words: “The decision on the possible financing must consider, alongside the scientific aspects, also the aspects regarding the image”. It was a bit like saying: be careful not to lose your face!


The cited conclusion of the analysis made in 2004 by G. Liberati on the ENEL’s possible participation in the financing of ENEA activities related to the cold fusion.

The management of ENEL got the message and, at the time, not even one euro was invested in this type of research, despite it was already knew – especially among the experts of cold fusion – that similar studies could have some impact in the energy field.

It is curious that the same TV program, some minutes before, had revealed that on March 4, 2003, the managers of Electricité de France (EDF) – the French energy giant – had met the heads of the French “Alternative Energies and Atomic Energy Commission” (CEA), the institution which manages all nuclear activities in Paris, civil and military. In such summit, the French power company asked the CEA to return to work on cold fusion.

Antonella De Ninno – physicist leader at ENEA of an excellent research group on LENR including also Antonio Frattolillo – tells some details: “We received a strange call by the High Commissariat for Atomic Energy. Then we received a letter in which their chief invited us to go to Paris to hold a seminar on cold fusion. Scientists from the Commissariat for Atomic Energy listened the report of the ENEA’s physicists and decided to pursue the matter”.

De Ninno_3Antonella De Ninno, researcher at ENEA, Frascati, tells on TV the here cited story.

The three scientists invited in France by the CEA were Emilio Del Giudice (INFN, Milan), Antonella De Ninno and Antonio Frattolillo (ENEA, Frascati). But the CEA was not interested in a collaboration. It simply responded to a request by EDF to see what Italian scientists had done.

As Antonella De Ninno reports to the interviewer: “Three persons came here, were guests at ENEA for one day, visited the laboratory, made very detailed questions, took photographs, made drawings. We misinterpreted it as a willingness on their part to cooperate”.

Thanks to the information collected at ENEA in Frascati, EDF created in France a cold fusion laboratory in one of its research centers, located near Paris. On the contrary, almost in the same period the Italian ENEL had missed its first opportunity in this field…

Illustrating_theoryThis piece realized by the physicist Alessandro Cavalieri is about the Gullström’s theory, an interesting attempt to explain how the E-Cat works. It shows that Sweden believes in LENR and that Swedish graduate students are studying it and writing papers on it:

To produce an isotopic shift in an E-Cat reactor we need an “ad hoc” mechanism, i.e. a good theory taking account the detailed experimental results obtained by Rossi and his team, because for many reasons it is not plausible that the fuel burning in the reactor is due to the thermal neutrons. As we do not have yet much totally reliable information about the fuel and the ash, this is not an easy task.

This is the reason for which Rossi considers interesting the theory developed by Carl Oscar Gullström – a doctoral student in the Department of Physics and Astronomy at Uppsala University, Sweden, where also prof. Bo Höistad works – and described in the paper “Low radiation fusion through bound neutron tunneling”, released on October 25, 2014.

Uppsala universitet Foto. Mikael WallerstedtThe Uppsala University, founded in 1477, is the oldest in Sweden and in the Nordic countries.

It tries to explain the isotopic shifts resulting from the analysis performed on fuel and ash powders after the Lugano test and published in the second Third Party Report (TPR-2). So, the different tunneling probabilities are calculated, in the so-called “WKB approximation”, for interaction between nickel (Ni), lithium (Li) and protons (H).

The expression “bound neutron tunneling” in the title of the paper simply means that a neutron which is bound to a nucleus (e.g. Li-7) moves to another nucleus (e.g. Ni-60). Being neutrons particles with no charge, there is no a Coulomb barrier, but instead a strong interaction potential barrier which tries to keep the neutron attached to its original nucleus.

But what is the meaning of the word “tunneling” in physics?

Everyday experience teaches us that surmounting a hill implies climbing up it (see picture). Quantum physics knows another way. Objects can get to the other side of the hill without climbing: they penetrate the hill horizontally. This phenomenon, dubbed tunnelling, has been understood in terms of the wave-like nature of matter.

tunnel el_3A very simple explanation of the “tunneling” in physics.

For macroscopic objects its probability is very low, that’s why we have never observed it. By sharp contrast, in the microcosm particles may – with significant probability – “tunnel” through regions of space where they could not be according to the laws of classical physics (e.g. in the bowels of the hill in the figure above).

Due to the tunneling effect, quantum mechanically described particles are able to overcome potential barriers without having sufficient energy to do so – they hence “tunnel” through the barrier. In contrast, as we’ve seen for particles described by classical mechanics only a “climbing over the barrier” is allowed.

The tunneling effect occurs in various different processes in nature. These are, for instance, nuclear fusion, nuclear fission, and alpha decay in nuclear physics as well as ionization processes, photo-association and photo-dissociation in biology and chemistry.

These processes almost exclusively take place in systems that are open and consist of many particles interacting with each other. The tunneling process of single particles has been well-understood in quantum mechanics since decades – yet almost nothing is known on the tunneling process of many particles interacting with each other.

The question to which extent the interactions between the particles cause the occurrence of cooperative phenomena is of particular interest in the context of Low Energy Nuclear Reactions (LENR), where such conditions may occur.

many_body_2Illustration of one-body tunneling (left) and the many-body tunneling process (right).

Well, the idea behind Gullström’s paper is that “bound neutron tunneling between 2 potential wells created by two nucleons should be considerable larger than Coulomb barrier tunneling. Bound neutron tunneling should give rise to a ground-state to ground-state interaction if the neutron energy level is close in the two considered nuclei”.

In his work, Gullström analyses a particular class of reactions theoretically allowed, in which the neutrons are stripped from one nucleus and captured by a second nucleus. So, they do not have to be generated, as in Widom-Larsen theory, where they result from electron capture by a proton (i.e. from an inverse beta decay).

Gullström’s theory is derived from basic quantum mechanical tunneling principles, whereas a detailed calculation should be done with advanced quantum mechanical process including spin-orbit and 3D properties for tunneling probabilities. Moreover, he does not explain why such reactions do not occur in ordinary lump of matter.

Finally, the scientists have shown that the many-body tunneling process cannot be described as the tunneling process of a single effective particle, because such a description neglects the occurrence of the collective phenomena and the build-up of correlations. The scientists found with the aid of exact numerical simulations that collective phenomena show up in the many-body process even for weak interactions.

However, this theory received some positive attention from Bo Höistad, one of the authors of the Lugano report, who told Mats Lewan: “It is very interesting. It fits like a glove with our results, both the isotopic changes and the absence of radiation. It is the first time that I see a scenario that could explain the results: it has not existed before!”.

In another paper published on November 18, 2014, tiArticolo_3tled “Collective Neutron Reduction Model for Neutron Transfer Reaction”, Gullström refines his neutron transfer theory. Again, the paper was not released through the normal scientific channels and there is not mention of a peer review, perhaps advisable on sensitive topics like these.

Here’s his comment: “I have improved the neutron transfer theory. In my first attempt the radiation was still a bit high but it is solved now. The trick is to not have high energy protons to drag out the neutrons but instead neutrons that are so low in energy that they can’t enter the nucleon but at the same time they could drag out more neutrons”.

The problem is whether “bound neutron tunneling” is something real or not. Experimental work in such direction would be necessary. Moreover, we don’t know if Nickel and Lithium are the only participants in the heat generating process, because it’s sure that the old E-Cat used a secret catalyst (which could not be Lithium, probably introduced only for the storage of hydrogen in a tablet) and LENR are probably a multi-stage process.

Indeed, on October 31, 2014, Rossi wrote on his JoNP: “As a matter of fact I think a (our) theory is ready, but it is strictly bound to particulars of the reactor that cannot be disclosed so far. I am working on this issue in collaboration with nuclear physicists”.

So, we must be patient: the answer is in the future!

ALESSANDRO CAVALIERI is a physicist who teaches Mathematics and Physics in a secondary school, in Northern Italy. His cultural interests goes from Chaos Theory to the Mind-Matter connections. He loves to read books on the history of Physics.

Vessela_Nikolova_5It is my aim to inform the general public in the widest sense possible of LENR (Low Energy Nuclear Reactions) and their enormous potential for our society, knocking down the thick walls often built by local and international energy lobbies who see this technology as a danger to their economic interests.

This blog sets out to take a first step in that direction. However, as you can imagine also looking only at the graphics, it requires the collaboration of external professionals and experts, without even considering the time that it takes away from my normal profession.

After this exploratory phase, I now need to understand if and how to continue with this work which will involve greater commitment both on my own behalf and that of my growing number of collaborators. In order to dedicate myself completely to such responsibilities and to do so in a free and independent way, I do not want to have a unique ‘employer’. The only way to be truly free is to have the support of the community.

I am satisfied with the work that has been carried out until now. This web site and the blog have been visited by important companies, investors and stakeholders, among whom, just to name a couple, the Department of State (Washington DC, USA) and the Presidency of the Italian Cabinet of Ministers (see below and another screenshot here).

Department_of_State_4Visit by a top level US politician, Department of State (I have covered the name for privacy).

I am by character an optimist and I feel sure that there are many people who share with me the desire allow the public opinion to discover – involving in this mainstream mass media – the revolutionary potential of LENR and Andrea Rossi’s E-Cat.

I would therefore kindly ask you for a contribution in line with your appreciation and resources in order to help me at least in part with the costs and to keep this blog alive. Not only me, but many other people in the world will be extremely grateful for your generous contribution.

If you want to be part of this project this is the moment to act.

Single readers can help ‘SUPPORT VESSY’S BLOG’ with free donations, but we also invite blog sponsorship from companies involved in the renewable energy sector and in LENR.

Donations are always anonymous for amounts less than 50 €, so you’ll find them grouped by amount. Whereas, for larger amounts, donations are anonymous only on your explicit request, otherwise the name of the donor – DISTINGUISHED (= or >1000 €) or MAJOR (= or > 50 €) – will be published together with the donated amount in the DONATIONS’ PAGE (click here).


“Donate is a pleasure that we do not give to others, but to ourselves” (Vessela Nikolova)

You can give your donation in a few seconds just by clicking on the Paypal button below (even if you do not have a Paypal account but only a credit card) and indicating, in the donation field, the sum you wish to contribute. In alternative, you can make a bank transfer to the following account: Bank: Hello Bank!, Beneficiary: Vessela Nikolova, IBAN: IT04 J010 0524 8000 0000 0002 146 (do not write the spaces), BIC / SWIFT: BNLIITRRXXX.


If our community grows we will easily be able to reach our target, so it is important to tell your friends about the project (by e-mail or through blogs, social media, etc.).

In this virtual age, we sometimes think that humanity is cold, but our ‘opponents’ do not understand the strength there is in sharing and how this has been made possible by communication systems which thanks to the web can cancel out the distances between us all.

My aim is to make sure that the contents of the blog can help people to understand that the technology exists which will save the planet from atmospheric pollution due to our use of the carbon fossil energy sources, responsible for the climate changes that are clear to everyone.

Maybe that is your dream as well in the same way as you wish to find out the secrets of the ‘New Fire’, which I will play as great a part as I can in revealing …

So, if you are not a troll, support this project and spread the word about this invitation!  🙂